新疆理化所三维高分子纳米复合材料的制备及应用研究取得进展-凯发k8官网登录vip

新疆理化所三维高分子纳米复合材料的制备及应用研究取得进展

发布时间:2018-07-11

  高分子纳米复合材料是材料科学领域新兴的研究方向之一。以碳纳米管(cnts)和石墨烯为代表的新型碳纳米材料由于具有独特的结构和优异的性能,在高分子纳米复合材料领域引起了广泛的研究兴趣。但是,如何将碳纳米材料分散在高分子基体并确保已经分散的纳米颗粒在复合材料制备过程中(如加热、加压等)的稳定性,是制备高性能纳米复合材料的关键。纳米材料具有巨大的比表面积,利用这一特性构筑具有宏观多孔、微观处于纳米分散体结构的泡沫材料为实现碳纳米颗粒的分散提供了一种新的手段。通常采用化学气相沉积法(cvd)可有效制备cnt、石墨烯等碳纳米泡沫材料。但该法常以泡沫镍、铜等金属为模板,所得材料在使用过程中须用强酸将金属模板去除,这难免会对碳纳米材料的结构和性能带来负面影响。 

        新疆理化所研究员马鹏程领衔的复合材料研究团队在cnt泡沫材料的制备和应用研究领域取得一系列进展:研究人员以廉价的商业化高分子泡沫材料(价格是泡沫镍的1/10)为模板,通过控制实验条件使催化剂的原位生成、高分子模板的部分热裂解去除以及纳米材料的生长等过程同步进行,实现了cnt泡沫体的高效、可控生长(图1a)。所得纳米泡沫材料具有优异的结构稳定性、疏水和吸附性能,可吸附自身30-80倍重量的有机溶剂和未聚合的液态高分子树脂(图1b)。此外,该方法可制备出任意形状的cnt泡沫,这为相应高分子纳米复合材料的制备提供了极大便利,泡沫体宏观所呈现出的聚集状态也解决了纳米颗粒在高分子基体中分散难以控制的问题。该方法还具有较好的普适性,如以天然棉纱或石墨烯泡沫材料为模板,可分别获得具有微米-纳米层级结构的材料或碳纳米杂化泡沫材料。

  科研人员充分利用cnt泡沫体的孔状结构和吸附性能,以聚二甲基硅氧烷为基体,同时结合树脂自浸润法制备了三维高分子纳米复合材料(图1c,研究了材料的力学、电学性质,发现材料具有独特的压阻效应(材料在外力作用下电阻发生线性或非线性变化行为),并以此为基础研发出基于三维高分子纳米复合体系的柔性应变传感器件。该器件可在不同条件下可实现对材料应变的高灵敏度检测,如在压缩情况下材料稳定的应变响应范围可达53%(对应的灵敏度因子为30.0),在拉伸条件下可达69%(对应灵敏度因子为9.9)。此外,该柔性传感器在一定的拉伸或压缩应变条件下均表现出良好的循环稳定性(图1de)。研究人员利用自行研发的扫描电镜-微型原位力学测试装置(图1f),研究了上述器件在应力条件下的实时微观断裂行为,发现器件的电阻行为与导电填料cnt泡沫骨架的变化、内部裂纹的产生和扩展(图1g)等多个因素相关,并从微观形貌和结构变化角度上对传感材料的力-电耦合行为进行了解释。该柔性应变传感器可以以多种方式结合到实际应用,如检测手指弯曲、制成电子皮肤显示材料应力分布状况、接入电路指示材料所处的应变状态等,在可穿戴设备、柔性电子显示、能源存储等领域具有广阔的应用前景。 

  部分科研成果已经申请国家发明专利并获得授权,有关三维高分子纳米复合材料用于柔性传感器件方面的研究工作近期发表在复合材料领域专业杂志composites science and technology上。该项研究工作得到国家自然科学基金以及中科院精细化学品产业化联盟等项目支持。 

   论文信息: 

). 

2.       carbon nanotubes on highly interconnected carbonized cotton for flexible and light-weight energy storage. advanced sustainable system, 2017, 1700022 (). 

3.       preparation of carbon nanotubes/graphene hybrid aerogel and itsapplication for the adsorption of organic compounds. carbon, 2017, 118, 765-771 (). 

    1.三维高分子纳米复合材料的制备及应用(a:以高分子海绵为模板制备的cnt泡沫材料;bcnt泡沫的疏水及吸附性能;c:柔性cnt泡沫/pdms三维高分子纳米复合材料;de:基于三维高分子纳米复合材料的柔性传感器件在多次拉伸和压缩条件下的压阻行为;f:用于研究材料在负载条件下实时微观断裂行为的微型原位力学测试装置;g:三维高分子纳米复合材料在不同负载条件下内部裂纹产生和扩展情况)

 

 

网站地图